A LATE BRONZE AGE HOARD AND EARLY IRON AGE BOUNDARY AT
LODGE FARM, COSTESSEY

Tom Woolhouse with Nina Crummy, Sarah Percival and Martin Tingle

SUMMARY

Excavations in advance of development at Lodge Farm, Costessey revealed late Bronze Age to early Iron Age activity. Five copper-alloy objects were found dispersed throughout the ploughsoil in the south-east of the site; ten other bronze objects were discovered in this area by a metal detectorist in the 1980s. The metalwork probably derives from a late Bronze Age (Ewart Park phase) hoard disturbed during ploughing. A substantial ditch, containing early Iron Age (8th to 5th century BC) pottery, was also revealed. The site offers a valuable opportunity to examine the landscape context of a bronze ‘hoard’ and the possible reasons for its deposition.

INTRODUCTION AND BACKGROUND (Figs. 1 - 3)

During October 2005, Archaeological Solutions Ltd (AS) carried out excavations of two areas of land at Lodge Farm, Costessey (centred on NGR TG 1650 1030; Fig. 1), on the western outskirts of Norwich. The excavations took place in advance of residential development and followed an earlier trial trench evaluation (Fig. 2). The archive and finds from both stages of fieldwork are deposited at Norwich Castle Museum. The site comprises a sub-square area of c. 1.8ha, bounded to the north by the A1074, to the east by Bawburgh Lane and to the south by Long Lane. The western perimeter follows an existing field boundary, on the other side of which lies Lodge Farm. The site lies at 29-43m AOD, on a ridge of higher ground between the valleys of the Rivers Wensum and Tud to the north, and the River Yare to the south; it slopes gently downwards from north-west to south-east. The higher ground in the area is interrupted by occasional north to south aligned dry valleys, running down towards the Yare. One such valley extends south from the south-east corner of the site (Fig. 3) and although dry, was shown as marshy on the 1st Edition Ordnance Survey map; another similar narrow valley c. 1.5km west at ‘The Hangings’ was similarly depicted. These valleys presumably act as channels for surface runoff and may in the past have contained small streams, or ‘cockeys’, as they are known locally. The solid geology of the area is Upper Chalk, overlain by glacial sands and gravels with occasional clay patches (Norwich Crag), and by alluvium in the river valleys (BGS 1985 & 1991). The site was formerly under arable cultivation.

Chance finds of several Palaeolithic tools (HER 9284, 9285 and 28712) and an assemblage of Mesolithic flints (HER 11385) suggest activity in Costessey from early prehistory. Neolithic flint tools and flakes have also been found close to the site (e.g. HER 7873, 9293, 16894 and 16895) and transient early Neolithic occupation, including the possible remains of a circular shelter, has been identified at Three Score Road, Bowthorpe, 2km to the south-east, near the River Yare (Percival 2002). Continuing use of the Three Score Road site in the late Neolithic to early Bronze Age
was indicated by a distinctive group of pits, which yielded numerous Beaker sherds and a piece of hazelnut shell, radiocarbon dated to 2500 to 1950 cal. BC.

Cropmarks close to Lodge Farm may represent prehistoric settlement sites and field boundaries, although most of these are currently undated. They include systems of rectangular enclosures and linear features immediately to the west (HER 12988 and 31518). Scatters of struck flints are also widespread in the area and although many are undiagnostic, they attest to fairly intensive prehistoric activity (e.g. HER 16424, 16426 and 36208). Several cropmark ring ditches close to the site (e.g. HER 9290 and 25986) indicate the former presence of Bronze Age barrows on the higher ground between the valleys of the Wensum and Yare. One was excavated in 1979 and found to be the remains of an early Bronze Age round barrow with a central inhumation in a wooden coffin, which may have been designed to represent a log boat (HER 11431; the Bowthorpe Barrow; Lawson 1986). Numerous finds of Bronze Age metalwork are also recorded from this narrow tract of land between the Rivers Yare and Tud (Ashwin and Davison 2005).

Iron Age activity in Costessey and neighbouring Bawburgh is attested by several pottery scatters, found between a few hundred metres, and a kilometre, away from the site (HER 9293, 16894, 16895 and 25704). Isolated finds of a coin (HER 21705) and an Iron Age or Roman brooch (HER 33059) have also been made, but the scale and precise nature of Iron Age occupation in the area remains unclear. It has been suggested that Roman Venta Icenorum, a short distance south-east of Costessey, was built on the site of a major late Iron Age settlement or oppidum (Davies 1996, 80).

Previous investigations at Lodge Farm

In the 1980s, a local metal detector enthusiast recovered ten late Bronze Age copper-alloy objects from the south-east corner of the site (HER 16398). The finds were dispersed throughout the ploughsoil, but were grouped fairly close together, suggesting that they originated from a single hoard deposit, dispersed from its original context by ploughing.

An aerial photographic assessment of the site (Palmer 2002), carried out as part of a desk-based assessment by CAU (Everill and Hall 2002), identified several possible archaeological features (plotted on Fig. 1) including a ring ditch in the north of the site, perhaps representing the remains of a ploughed-out Bronze Age barrow. Just to the north of this, two closely-spaced parallel linear features ran on an approximately east to west alignment across the site for c. 140m forming what appeared to be a track or droveway. Around 60m to the south, another linear feature, possibly a ditch, ran parallel to the trackway for a similar distance, although in two separate lengths separated by a gap of c. 40m. In addition to the ring ditch and linear features, numerous probable pits were noted, some of which seemed to form ‘arcs’ or near-complete circles, and could feasibly have indicated the positions of roundhouses. Cropmark features were mainly concentrated in the north-west of the site; areas of deeper soil visible on the aerial photos were particularly widespread towards the south and east of the site, potentially masking additional archaeological features.

Following the desk-based assessment and aerial photographic appraisal, a field survey was carried out by CAU (Beadsmoore, Cooper and Hall 2003a & b; HER 37646 &
The fieldwalking recovered large quantities of worked and burnt flint. Concentrations of worked flint were noted in several locations, including around the ring ditch and adjacent to the main section of the possible linear ditch. Burnt flint was particularly prevalent in the area between the ring ditch and linear ditch, and in the area between the east end of the ‘trackway’ and the parallel linear feature to the south. The character of the material was mainly consistent with late Neolithic and early Bronze Age flint working, but a lower density of earlier Neolithic and later Bronze Age material on the site implied longer-term non-intensive prehistoric occupation (ibid., 12). The high frequency of utilised and retouched material and comparatively large quantities of unworked burnt flint were thought to indicate settlement activity (ibid., 7-8).

A thorough trial trench evaluation of the site (91 trenches, representing a 5% sample of the total site area; Fig. 2) was carried out in Autumn 2003 (AS; Grant and Sutherland; HER 39796). The most significant feature identified was a large east-south-east to west-north-west aligned linear ditch containing a fairly large assemblage of early Iron Age pottery, in addition to struck and burnt flint and an amber bead. The ditch corresponded with the long linear feature identified in the aerial photographic assessment. The cropmark of the possible ring ditch was rectified and three separate trenches were dug to investigate the feature. However, despite the thorough trial trenching of its location, no evidence of the conjectured ring ditch was found. Most of the pits suggested by the aerial photographic appraisal were found to be irregular and probably natural in origin.

THE EXCAVATION

The excavation focused on two areas of the site, which were specified following the trial trench evaluation. Area 1 (50 x 30m) was located over the early Iron Age ditch discovered in the centre of the site and Area 2 (50 x 25m) centred on the previously discovered bronze hoard in the south-eastern corner (Fig. 1). The main objectives of the excavation were to recover as much information as possible from the ditch and to identify and record any other surviving evidence of Iron Age or earlier activity. Full descriptions of all features and deposits revealed by excavation can be found in the Interim Report and Archive Report (Doyle and McConnell 2005; Woolhouse 2007).

Topsoil and subsoil were removed under close archaeological supervision using a mechanical excavator with a toothless ditching bucket, until the underlying archaeological horizon/ natural deposits were encountered. The exposed surfaces were hand cleaned and all further excavation was undertaken by hand. Finds were retrieved by hand and recovery may therefore have been biased towards larger objects and fragments. A metal detector was used to check excavated spoil for finds and for surface scans of the site throughout the machining and excavation. A programme of purposeful environmental sampling was undertaken, with the aim of obtaining information relating to the past environment and economy of the site.

Summary

Topsoil, comprising loose mid brown/grey silty sand up to 0.38m deep, was present across the site. In places, it was underlain by up to 0.36m of subsoil, consisting of
loose mid brown/orange silty sand. This was not present in the north-east of Area 1 and was entirely absent from Area 2. In the west of Area 2, a shallow north to south aligned valley was filled by colluvial gravel. The natural sand drift geology lay beneath the subsoil in Area 1 and beneath the topsoil and colluvium in Area 2. With the exception of a single posthole in Area 2, all archaeological features were cut into the natural sand. Truncation from agricultural activity was apparent from the patchy distribution of the surviving subsoil and from plough scars running over archaeological features.

The excavation revealed a small number of archaeological features. Due to the absence of stratigraphic relationships, the archaeological features and finds have been assigned to two phases (late Bronze Age and early Iron Age) largely on the basis of artefact typology. These two phases were not necessarily successive and may both be assigned to the early centuries of the 1st millennium BC. Undated features, including several pits in Area 1 and two parallel ditches in Area 2, were also identified.

Phase 1: late Bronze Age (Figs. 4 - 7)
Nina Crummy and Tom Woolhouse

Five copper-alloy objects, comprising two socketed axes (SFs 1 and 5), a fragment of a third axe (SF 3), a scabbard chape (SF 2) and a small piece of slag (SF 6), were recovered from the topsoil (L2000) of Area 2. Two of the items were identified during the excavation; three were recovered from the Area 2 spoilheap by metal detector following the stripping of the topsoil. The items all appear to have been in either damaged or heavily-worn condition prior to their deposition. They probably come from a dispersed late Bronze Age (Ewart Park phase) hoard disturbed during ploughing. Ten copper-alloy finds (SFs 8 - 17), of similar date and in similar condition, were found in this corner of the site in the 1980s and may have originally formed part of the same hoard; these finds are discussed further below. The finds recovered in the 1980s were distributed in a tight cluster, approximately 15m north-east of the copper-alloy objects found during the excavation.

One of the axes found during the excavation is small and lacks the side loop. The chipped edge and bands of striations from sharpening attest to considerable wear during its period of use. A similar small axe with no loop was among the objects forming the Reach Fen hoard from Cambridgeshire and there is a second from Mildenhall Fen (Prigg 1880, no. 3; Pendleton 1999, fig. 66, 299). The second axe appears to be a failed casting. One side is much thinner than the other and the base has sheared off neatly apart from a ragged-edged patch on the thin side, which seems to have been the location of at least one air bubble. With its three ridges on each side and mouldings close to the mouth, it is close in form to examples from Icklingham and Lakenheath, Suffolk, and Aylesbury, Buckinghamshire, although the type in general is widespread across the region (Pendleton 1999, 125-6, fig. 4, H5.2, figs. 8-9, fig. 37, 121; Farley 1979, figs. 6.2-6.3). The wear on the small axe, and the condition of the second, might suggest that they belonged to a founder’s hoard of scrap metal collected for reuse. This is perhaps supported by the very small fragment representing the third axe and the damaged condition of the chape, which lacks its rivet holes on one side and could not be re-affixed to a scabbard.
Ten copper-alloy objects from the south-east of the site were recovered by a metal detectorist in the 1980s and are in private ownership. Illustrations of the objects drawn by Norfolk Museums and Archaeology Service were consulted for this report. However, without firsthand examination of the objects themselves it has not been possible to confidently identify use-wear marks, or to scrutinise the quality of either the metal or the casting. Two of the objects from the site are not positively identifiable as Bronze Age: one because it is too small, the other because it is of unusual form. In these cases, the quality of the alloy and its patina would have been invaluable guides to the antiquity of the pieces.

The metal-detected group consists of three complete socketed axes (SFs 8, 9 and 13) and fragments of two others (SFs 11 and 14), two ingot fragments (SFs 15 and 17), a fragment of a tanged knife (SF 12), a small fragment that may come from a chape (SF 16) and a cast perforated and socketed disc (SF 10).

Two of the socketed axes (SFs 8 and 9) are matched by two from the excavation (SFs 1 and 5). All four are of the south-east group that is widespread across the region (Schmidt and Burgess 1981, 212). The other three axes are all of Yorkshire type, which occurs sporadically in the region (ibid., 233). As they have only been identified from drawings (see above), it has not proved possible to note signs of use wear or of deliberate damage. The cast and socketed disc (SF 10) is unusual and, without personal examination, there must remain some doubt as to its antiquity. Assuming it is Bronze Age, it can be best compared to cast perforated discs and in particular to one from Heathrow (O’Connor 1980, 538, list 143, 5, fig. 69, 8). These discs generally have a low flange rather than a socket around the central hole; some have been described as risers from the casting of socketed tools, although this identification is far from certain (ibid., 181). The Lodge Farm object may alternatively be a form of socketed ferrule with expanded base, such as one from Marston St Lawrence, Northamptonshire (Inv. Arch., GB.12 3(3), no. 7), but these ferrules usually have a solid unperforated base.

Fragments of undated ‘gritty’ pottery and struck flints were found in close proximity to the ten copper-alloy objects found in Area 2 in the 1980s, suggesting that the deposition of the metalwork took place in the context of other prehistoric activity (HER 16938; Everill and Hall 2002, 8). Although no features dating to Phase 1 were present on the site, this may well be the result of recent plough damage.

Finds catalogue

1. SF 1. (L2000). Topsoil. Small copper-alloy socketed axe with thickened rim. The crescentic blade edge is worn and notched from use and has a band of many small striations, made by a sharpening stone, across the width. Length 59mm, socket 22 by 24mm, blade width 37mm.

2. SF 2. (L2000). Topsoil. Copper-alloy scabbard chape, damaged on one side but retaining part of a rivet in one of the rivet holes on the other. Both faces are decorated with transverse groups of cordons emphasised by grooves. Length 28mm, width 37.5mm.

4. SF 5. (L2000). Topsoil. Upper part of a socketed copper-alloy axe with the blade end broken off. There is a heavy moulding at the mouth of the socket and a small moulding below it, and each face bears three vertical ridges. The inner edge of the mouth is rough and unfettled and the casting seam on the loop side is also unfettled, particularly above, below and inside the loop, although the seam on the opposite side is much neater. The metal on one face is much thinner than on the other and an irregular hole along the break on that side may have been formed by a large air bubble. Length 65mm, socket 38 by 41mm, width above break 33mm.

6. SF 8. (L2000). Topsoil. Complete copper-alloy socketed axe with thickened rim. The blade is crescentic and appears to be notched from use. The side loop is set slightly asymmetrically to the casting seam. Length 72mm, blade width 42mm.

7. SF 9. (L2000). Topsoil. Complete copper-alloy socketed axe with thickened rim and crescentic blade, as SF 8. The socket has been crushed, presumably damage done after use, as the casting seam on the side loop has been fettled and some asymmetry on the blade is probably the result of use-wear. Length 85mm, blade width 50mm.

10. SF 12. (L2000). Topsoil. Fragment of a copper-alloy tanged knife with a perforation on the tang near the shoulders for attachment of a grip and broken across a second perforation at the upper end. Length 83mm.

11. SF 13. (L2000). Topsoil. Complete copper-alloy socketed axe with thickened rim, side ribs and one central rib. The casting seam and socket appear to be unfettled. The edge of the blade is irregular, perhaps from use-wear. Length 85mm, edge width 43mm.

Phase 2: early Iron Age (8th – 5th century BC) (Figs. 8 & 9)

Phase 2 was dominated by a large ditch running across the centre of Area 1. Ditch F2003 (=F1003) ran for more than 50m on a south-east to north-west alignment, extending beyond the limits of the excavation area in both directions. It corresponded with part of a linear cropmark identified in the aerial photographic assessment of the site (Palmer 2002, 1; Fig. 1). The ditch was a sizeable feature, measuring up to 2.58m in width by up to 0.61m deep (Fig. 9, Seg. D). Given the damage from ploughing which had reduced other features in the vicinity to shallow depths, Ditch F2003 would originally have been both wider and deeper. The ditch appeared to have gradually silted up; there was no evidence of it having been cleaned out or re-cut at any stage. This contrasts with some other later prehistoric sites in the region such as Game Farm, Brandon, where the boundary ditches exhibited fairly complex sequences of infilling and re-cutting (Gibson 2004, 10 & 24 fig. 17).

Eight of the 21 pieces of worked flint found on the site were recovered from the fills of Ditch F2003. The assemblage includes primary, tertiary and uncorticated flakes, as well as a scraper and a possible scraper (terminology follows Andrefsky 1998). All of the worked flint could be residual, although some Iron Age sites in Norfolk have produced unequivocal evidence for flintworking in this period (Robins 1996) and the worked flint might therefore be contemporary with Ditch F2003. None of the recovered pieces are obviously diagnostic, although they could all have derived from a later prehistoric assemblage.

A short length (35mm) of iron wire, possibly part of a brooch pin, and a fragmentary amber bead (SF 7) were also found in the fills of Ditch F2003 (=F1003). The amber bead is in five fragments, roughly discoid with a central perforation and of slightly variable thickness (maximum surviving length 9mm, width 9mm, thickness 5mm). One face is flat, the other has an irregularly-faceted edge, perhaps cut to maximise reflected light.

Plain amber beads can generally only be dated by association and are very rare in any period except the 5th and 6th centuries AD, when discoid beads occur in considerable numbers in Migration Period graves and occasionally on settlement sites (e.g. Evison and Cooper 1985, 72, table 7; Green et al. 1987, table 2). The Lodge Farm bead need not necessarily belong to this period: amber beads of similar form were among the Wessex-type grave goods in the Bronze Age barrow at Little Cressingham, Norfolk (Clarke et al. 1985, 276, figs. 4.29b, 7.27). Migration Period beads are usually considered to be imports from the Baltic region, but raw blocks of amber are occasionally washed up onto the Norfolk coast and may have been locally utilised (Shepherd 1985, 204-5). This may have some bearing on the fact that the amber beads in the Little Cressingham barrow make it one of the richest outlying Wessex-type burials (Piggott 1938, 93), while a Wessex-type barrow at Wimblington (Cambridgeshire) also contained amber beads and would have lain close to the contemporary coastline (Taylor 1981, 115-16, fig. 46). The beads from both barrows may derive from local utilisation of amber washed up on the East Anglian coast.

1 Struck flint described here by Dr Martin Tingle
2 Amber bead and iron wire described and discussed by Nina Crummy
Around 2.70m south of Ditch F2003 was a line of three postholes on a parallel alignment to the ditch (F2025, F2007 and F2005). All had been reduced to a shallow depth by ploughing. Postholes F2025 and F2007 each yielded single sherds of early Iron Age pottery; F2007 also contained an undiagnostic uncorticated struck flint flake and a single highly-abraded fragment (2g) of CBM in an oxidised (fired) sand-tempered fabric, which is too small and abraded to assign either a form type or date. A small number of severely puffed wheat (Triticum sp.) grains were noted in a bulk environmental sample taken from the fill of Posthole F2025 (L2026) and a poorly-preserved seed, possibly of medick/clover/trefoil (Medicago/Trifolium/Lotus sp.) type, was found in a sample from Posthole F2005 (L2006). A fourth posthole, F2009, was encountered 3m north of the ditch. This is thought to be contemporary, based on its similar profile and fill to the postholes to the south. A further isolated posthole (F2032) was located on the west side of Ditch F2034, in Area 2. Several of the postholes contained quantities of charcoal and had red staining at their edges, suggesting that the posts had burnt in-situ. It is unclear whether this burning was the result of accidental damage, deliberate removal or violent destruction.

The pottery (Fig. 10)
Sarah Percival (Norfolk Archaeological Unit)

Forty-nine sherds weighing 339g were recovered from five contexts at Lodge Farm. All but one of the sherds are of Iron Age date; the remaining sherd may be Bronze Age. The sherds are fragmentary and in a poor condition.

Bronze Age

A single sherd (7g), in heavily-grogged fabric (G1) characteristic of Bronze Age pottery, was recovered from the fill of Ditch F2003 (L2028). The sherd is heavily-abraded, with the interior surface missing. The fabric, colour and thickness of the sherd suggest that it may be from a Bronze Age urn; however, the poor condition prohibits exact identification. Little Bronze Age pottery has been found in Costessey. A few isolated sherds, which may be contemporary with that from the present site, were recovered during evaluation work prior to the construction of the Park and Ride (HER 33842).

Iron Age

The Iron Age assemblage comprises 48 sherds weighing 332g, recovered from the subsoil, the fills of Ditch F2003 and two postholes (F2007 and F2025) (Table 1). The majority of the sherds are tempered with crushed burnt flint, which may be either abundant (Fabric F1, four sherds (28g)) or common (F2, 26 sherds (199g)). The remaining sherds have abundant quartz sand inclusions (Fabric Q1, 14 sherds (84g)), occasionally with possible grog or organic inclusions (Q2, four sherds (24g)).

3 CBM analysed by Andrew Peachey
4 Bulk environmental samples analysed by Val Fryer
<table>
<thead>
<tr>
<th>Feature</th>
<th>Context</th>
<th>Quantity</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsoil</td>
<td>2001</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>Ditch F2003</td>
<td>2004</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>37</td>
<td>260</td>
</tr>
<tr>
<td>PH F2025</td>
<td>2026</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PH F2007</td>
<td>2008</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>48</td>
<td>332</td>
</tr>
</tbody>
</table>

Table 1: Quantity and weight of sherds by feature

The assemblage contains at least three small carinated cups or jars with thin burnished walls and simple flat rims and perhaps two medium jars, also with carinations high on the body and simple everted flat-topped rims. Five sherds have shallow incised bands around the neck and shoulder. A simple base sherd has single shallow fingernail impressions and two body sherds are fingertip-impressed.

An earlier Iron Age date is suggested for the assemblage, perhaps the 8th to 5th centuries BC. The mix of flint-tempered ‘coarse wares’ with sand-tempered ‘fine wares’ is characteristic of this period, as is the presence of small fine cups (Barrett’s class V) alongside carinated bowls or jars (Barrett’s class II). Similar incised or furrowed decoration can be seen within the assemblage from Orsett Causewayed Enclosure, Essex (Brown 1988, fig. 16, 68), while the fingertip-impressed decoration finds a parallel within 7th to 6th century BC sherds from Longham (Percival 1999). Within Costessey, little Iron Age material has been recovered; however, a few sherds of indeterminate Iron Age date were discovered at Long Lane, on the site of what is now the Park and Ride (HER 33842).

The assemblage recovered from the ditch (F2003 (=F1003)) during the trial trenching was originally thought to date from the middle to late Iron Age (Thompson 2003). However, based on the presence of a similar mixture of fine wares and flint-gritted coarse wares and the presence of similar vessel forms, the pottery from the evaluation is also likely to be of early Iron Age date (Thompson, pers. comm.).

Comment on undated features

A layer of small stones and pebbles (L2041) was identified below the topsoil and overlying the natural sand in the westernmost 5m of Area 2. This probably represents a colluvial accumulation in the slight valley which runs south-eastwards through this area (Figs. 1 & 3). It is tentatively suggested that this layer had formed by the Iron Age, as Posthole F2032, which shared a similar profile and ‘scorched’ appearance to the early Iron Age postholes in Area 1, was cut into it.

Several irregular hollows (F1005, F1007, F1009 and F1015) were identified across the site during the trial trenching, corresponding to anomalies noted in the aerial photographic assessment. Based on their irregular profiles and the charcoal in their fills, they are thought to represent tree boles. None contained diagnostic finds, but the regular occurrence of struck and burnt flint in their fills suggests that the tree clearance at the site occurred at some point in prehistory.

Two fairly narrow, shallow and closely-spaced (c. 4m apart) parallel ditches ran north to south across Area 2 (F2030 and F2034). Apart from a single eroded sheep/goat
(Ovis/Capra sp.) molar in F2030 (L2040), neither contained finds. Although undated, the spatial arrangement of the ditches is suggestive of a droveway. However, the ditches could equally represent earlier demarcations of the existing modern field boundary at the eastern edge of the site, to which they ran parallel.

DISCUSSION

The late Bronze Age ‘hoard’

Although disturbed from their original context by ploughing, it seems likely that all the copper-alloy objects found in Area 2 of the site originally belonged to the same hoard deposit. This includes both the five items found during the excavation and the assemblage of ten objects discovered in the south-east corner of the site in the 1980s. Despite being unstratified within the ploughsoil horizon, all the objects (with the exception of the three recovered from the spoilheap following the topsoil stripping) were found fairly close together, distributed over an area of not much more than c. 20 x 20m. It is tempting to view the items as having been deposited as a group in a single episode; however, they could equally represent a series of temporally-distinct depositions over a period of time, which were nevertheless repeatedly focused on the same point in the landscape (cf. Bradley 1990, 6; Roberts and Ottaway 2003, 135).

Although unstratified, the relatively closely-grouped cluster in which the items were found suggests they had not been moved far from their original point(s) of deposition. The assemblage therefore offers a valuable opportunity to examine the location in the landscape that was selected for the deposition of the metalwork. Analysis of the landscape context of such activity on a case by case basis is often impossible, as the provenances of ‘hoards’ and individual objects found by metal detectorists are frequently (though not always) poorly-recorded. Where studies have been undertaken, it has been possible to identify patterns with important implications for our understanding of the impetus behind and social and political significance of metalwork deposition. A study of late Bronze Age socketed axes from south-east Scotland and east Yorkshire, for example, has suggested that they were frequently deposited at prominent natural features in the landscape, or at the boundaries of different natural environments, reflecting the growing concerns with territoriality and agricultural intensification that were two of the principal themes of the late Bronze Age (Roberts and Ottaway 2003, 136).

Several observations can be made about the landscape context of the Lodge Farm hoard. The metalwork was deposited on fairly high ground, just above the 30m contour, on a south-facing ridge overlooking the River Yare (Figs. 1 & 3). Earlier in the Bronze Age, this low ridge had seen extensive funerary activity, with several now ploughed-out barrows within c. 1.5km of the site occupying similar positions on or just above 30m OD (HER 9290, 9292 and 11431). It is highly likely that these were still visible in the late Bronze Age. The possible cropmark ring ditch at the site itself (see above; Fig. 1) might represent another barrow located approximately 175m north-west of where the hoard was originally deposited. Around 450m south-east of the site, also on the 30m contour, a late Bronze Age chisel (HER 29398) has been

5 Animal bone analysed by Carina Phillips
found close to the early Bronze Age Bowthorpe Barrow (HER 11431; Fig. 3). This close spatial association between a burial mound and a bronze tool deposit is interesting. Although speculative, it is perhaps possible that the deposition rationale was associated with the bodies buried within the mound; perhaps as a form of propitiatory offering to the dead or the generic ‘ancestors’ (Brück 1995, 263-4). The raising of mounds and the deposition of metalwork at similar places in the landscape might suggest common concerns underlying both acts: perhaps a desire to display individual or family/group status through building monuments and performing ceremonies in prominent locations. However, given its location, nearly 200m away from the nearest burial mound, this does not seem to have been the case with the bronze hoard at Lodge Farm.

Another notable factor in the choice of location for the Lodge Farm hoard is its position at the head of a narrow north to south aligned valley running down to the River Yare (Fig. 3). Although now dry (see Introduction and Background, above), this valley could have been wet in the past and might have been a feature of the late Bronze Age landscape in which the hoard was deposited. The deposition of metalwork in this location gives rise to several possible interpretations. The valley forms a convenient natural boundary, which perhaps could have been used in the late Bronze Age to define the limits of land under different ownership. Deliberate deposition of metal objects in such a location might have reinforced the demarcation of territory in the way discussed by Roberts and Ottaway (2003, 136). An alternative explanation is that the stream was a focus for ritual activity and that the metalwork was a votive deposit. Deliberate deposition of metal objects in watery contexts is well-attested during this period; in the broadest sense, such deposits often seem to have been offerings, perhaps to deities, natural forces or ancestors (Pryor 2003, 275-7; Bradley 1990, 23-4; Parker Pearson 1993, 117). It might be argued that worn and damaged metalwork such as that from Lodge Farm is unlikely to have been deposited as an offering, but we cannot necessarily apply concepts of quality and value derived from modern consumer society to the treatment of objects in prehistory (Champion 1999, 107). Wear and tear on objects might, for example, have carried important connotations about their owners or the tasks that they had been used for. Similar broken pieces and half-melted fragments of bronze have been found in structured deposits such as burials (Bradley 1990, 26).

Temporarily leaving aside its landscape context, the composition and condition of the hoard provides an equally valuable line of enquiry as to the reason for its deposition. Based on the high proportion of tools and the presence of damaged items and fragments of raw material, the Lodge Farm group exhibits many of the characteristics of a founder’s hoard of scrap metal gathered together for recycling (cf. Bradley 1990, 11-12). Many of the objects are in worn or fragmentary condition and it seems likely that some would never have been in a suitable state to use. One of the axes (SF 5), for example, appears to be a failed casting, while the assemblage also includes axes with blades that are notched and irregular from use and frequent sharpening (e.g. SFs 1, 8 and 9) and other items which could not have been reused due to damage (e.g. the scabbard chape, SF 2). The collection also includes fragments of copper alloy ingots (SFs 15 and 17), which were possibly raw material for metalworking.

However, the sheer number of such ‘founders’ hoards’ that have been identified, that were apparently never recovered by their owners, is highly problematic. The apparent
frequency with which such collections were not reclaimed undermines the theory that they represent deliberate accumulations of valuable material that could be reworked. In many cases, possibly including the Lodge Farm hoard, it seems more likely that the metal was never intended to be recovered at all. Instead, it may represent dumped rubbish that was no longer considered to have any value (Pendleton 1999, 91-2; 2001, 176-7).

This interpretation of many ‘hoards’ and stray finds of bronze metalwork has considerable repercussions for our understanding of late Bronze Age East Anglia. Amongst other considerations, this interpretation implies that by this time, bronze was a common commodity and that its possession or conspicuous deposition no longer had any of the connotations of high status and prestige that have been emphasised by some researchers (e.g. Taylor 1993, 99-102). A further implication of this interpretation is that the distribution of ‘hoards’ is likely to reflect the pattern of late Bronze Age settlements, where the people who owned, used, and subsequently discarded these bronze tools at the end of their functional lives, would have lived. Settlement sites of this period are still rare in northern East Anglia (Brown and Murphy 1997, 18), but this is probably more a matter of poor archaeological visibility rather than genuine absence. The poor survival of the friable pottery of the period in ploughsoil contexts is one factor. In addition, the unenclosed nature of most settlements and the scarcity of evidence for disposal of the dead following the decline in barrow building around c. 1800 cal. BC further exacerbate the difficulties of identifying areas of settlement (Ashwin 1996a, 57). Bradley notes that the locations in which ‘utilitarian’ hoards (i.e. so-called ‘founders’ hoards’ and ‘merchants’ hoards’) are found have rarely been studied in much detail, but that where they have been studied, the evidence suggests that they often occur in very close proximity to contemporary settlements (1990, 13).

There is indeed some evidence to indicate that the deposition of the bronze objects at Lodge Farm took place in the context of other contemporary activity or occupation, rather than in isolation. Undiagnostic flints and sherds of gritty prehistoric pottery were recovered from the same area as the metalwork found in the 1980s. Although the precise date of this pottery remains unconfirmed (HER 16398; Everill and Hall 2002, 6), the description of the sherds as ‘gritty’ could suggest that they were similar to, and perhaps contemporary with, the heavily flint-tempered pottery recovered during the excavation. Despite the uncertainties over their dating, these finds are nevertheless suggestive of other prehistoric activity in the immediate area where the metalwork was deposited. They could represent settlement debris or rubbish dumped along with the worn bronze tools. It should also be considered that the metalwork might in fact have been contemporary with the Phase 2 boundary ditch (F2003), located 140m to the north-west. Although the ditch was dated to the early Iron Age (8th to 5th century BC) on the basis of its associated pottery, late Bronze Age Ewart Park phase metalwork, such as that from Lodge Farm, is often assigned a broadly similar 8th to 6th century BC date (Ashwin 1996a, 56). The imprecision of using typological criteria as a basis for dating late Bronze Age/ early Iron Age pottery has been highlighted by Willis (2002, 5). The division between the two periods is perhaps an arbitrary one, which is not really meaningful at sites of these dates (Ashwin and Bates 2000, 178). It is therefore possible that the metalwork found in Area 2 represents material deposited on the periphery of a late Bronze Age to early Iron Age settlement enclosed by the boundary ditch (see below).
It is in this context of the contemporary human landscape and settlement pattern that the location selected for the deposition of the ‘hoard’ is best understood. The worn and damaged tools were probably deposited on the periphery of a settlement site, whose position on the higher, drier slopes above a river valley conforms to the pattern of habitation observed at other late Bronze Age sites in the region. Approximately 1km south-west of the site, also on the hillside overlooking the River Yare, a Bronze Age chisel has been found in close proximity to Bronze Age struck flints and Bronze and Iron Age pottery (HER 9293). Perhaps here too, the association of Bronze Age metalwork and other occupation ‘debris’ indicates the deposition of material on the edge of another Bronze Age/ Iron Age settlement. In the light of this possible connection between late Bronze Age metalwork deposits and areas of settlement, it is interesting to note the large number of bronze finds recorded along the Yare-Tud watershed (Ashwin and Davison 2005).

However, the interpretation of deposits of worn or damaged bronze tools as representing no more than ‘refuse’ from settlements is probably missing an important dimension to the treatment of objects in prehistory. The value judgements attached to ‘refuse’ in the Bronze Age were not the same as in the modern Western world: broken objects were often used and deposited in ways that suggest they held particular symbolic significance (Brück 2001, 153-4; Brück 1995, 255). In many societies, metalworking has been seen as a magical process of transformation. Materials such as casting debris and broken items that could potentially be recycled might have been viewed as potent metaphors for transformations in human lives (e.g. birth, coming of age, changes in social status, death) or for points of transition in space and time (Brück 2001). Deliberate deposits of worn or broken objects, which were at a point of transformation in their ‘lifecycles’, might have served to mark important events or changes in the life of a settlement or its occupants (Brück 2001, 151). At other late Bronze Age sites, deliberate deposition of bronze objects, including worn and damaged items, seems to have served as a means of emphasising particular points in space or drawing attention to the crossing of important boundaries. Bronze mould fragments were placed at the east and west entrances to the late Bronze Age settlement at Springfield Lyons in Essex (Buckley and Hedges 1987). At South Dumpton Down in Kent, a collection of bronze objects, including broken pieces, was carefully arranged in a small pit cut into the side of the enclosure ditch around a middle Bronze Age settlement (Barber 2001, 163). The deposition of worn and damaged bronze tools on the periphery of the possible settlement at Lodge Farm could have been a similar ritual act, perhaps intended to draw attention to the transition/crossing point between the inside and outside of the settlement and to underline ‘emic’ and ‘etic’ (insider and outsider) identities.

Other examples underline the deliberate, structured manner in which some late Bronze Age metalwork was deposited. The hoard of three socketed axes from nearby Cringleford, for example, comprises objects that appear to have been unused as tools and still bear casting flash (Lawson 2000, 211 fig. 172 & 216). Other hoards contain numerous apparently deliberately broken or ‘killed’ items (Bradley 2002, 55-6). In instances such as these, metalwork deposition was clearly motivated by concerns other than utilitarian scrap hoarding or a need to dispose of unwanted ‘rubbish’. It is unfortunate that many of the Lodge Farm objects could not be examined firsthand (see
above); as a result it has not been possible to confidently identify whether any were similarly unused or deliberately broken.

The early Iron Age site

The small group of early Iron Age features was dominated by the large ditch running across the centre of Area 1 (F2003 (=F1003)). Ditch F2003 had been truncated by ploughing and would undoubtedly originally have been a larger and more prominent landscape feature. Given its scale and the considerable quantity of pottery found in its fills, it seems reasonable to suggest that it could have been part of a boundary, perhaps either enclosing a settlement or forming part of a field system closely associated with an occupation area.

The first of these possibilities is unlikely: early Iron Age settlements in East Anglia appear, almost without exception, to have been open (Ashwin 1996b, 274; Cunliffe 1991, 166-67; Darvill 1987, 114-16; Champion 1994, 131). Although the roundhouses at Micklemoor Hill, West Harling (Clark and Fell 1953) were surrounded by large ring ditches, these roundhouse enclosures may have been integral parts of early Iron Age ‘great houses’ of some kind (cf. Evans 2003, 258-63) rather than representing an enclosed settlement. It is perhaps more likely that Iron Age activity/occupation at Lodge Farm was taking place in a subdivided landscape of the kind recorded at Game Farm, Brandon (Gibson 2004). A similar landscape, divided up into ditched (and probably fenced) enclosures for managing livestock, characterised the early Iron Age site at Valley Belt, Trowse (Ashwin and Bates 2000). Ditch F2003 may have been part of a similar system of ditched fields and paddocks associated with a settlement area.

In terms of size and morphology, Ditch F2003 was comparable to the field/enclosure boundary ditches excavated at both Valley Belt and Game Farm. The largest of the ditches at Valley Belt measured around 1.90 to 2.90m wide by up to 1.04m deep at one of its terminals (ditch 406, Ashwin and Bates 2000, 159). The ditches at Game Farm were smaller, none exceeding 1.09m in width by 0.55m deep (Gibson 2004, 25). At 1.78 to 2.58m wide, by up to 0.61m deep (in Segment D), Ditch F2003 was certainly within the same order of magnitude as the boundary ditches at either of these sites. The surviving portion of F2003 maintained the same south-east to north-west alignment over a distance of at least 50m, while the cropmark of the ditch visible on aerial photographs appeared to continue on the same alignment for up to 150m. This suggests that any enclosure system at Lodge Farm is likely to have been rectilinear form, mirroring the layout of boundaries at Valley Belt (Ashwin and Bates 2000, 159) and the slightly more meandering, braided network of ditches at Game Farm (Gibson 2004, 10 & 11 fig. 10).

The pottery assemblage recovered from Ditch F2003 bears similarities to those from other early Iron Age settlement sites in the region. The mix of flint-tempered ‘coarse wares’ and sand-tempered ‘fine wares’ mirrors the composition of the assemblages from West Harling (Clark and Fell 1953, 14-15) and Trowse (Percival in Ashwin and Bates 2000, 170). It has been suggested that the larger inclusions in the coarse wares made them capable of withstanding continued reheating and cooling during cooking, while the finer fabrics may have been used for vessels where this quality was not
required, such as those for storage or other household use (Ashwin and Bates 2000, 178).

However, the surviving evidence is too limited to be certain that the features at Lodge Farm represent part of a settlement. The postholes may have been related to structures, possibly dwellings, but there were no obvious spatial configurations to support this. The ‘arcs’ of pits or postholes identified by the aerial photographic assessment turned out to be largely natural rather than the remains of roundhouses (Fig. 1; Palmer 2002, 1; Grant and Sutherland 2003). Given the shallow depth of the surviving postholes, it is possible that structural remains were once present, but that many of the associated postholes/other structural features had been entirely removed by ploughing. The spatial relationship between the parallel line of three postholes in Area 1 (F2025, F2007 and F2005) and Ditch F2003, suggests an alternative interpretation of the postholes as forming fences. A similar relationship between enclosure ditches and parallel fences was observed at Valley Belt (Ashwin and Bates 2000, 159 & 190), where the ditches and fences were interpreted as parts of the same large-scale system for managing livestock, possibly sheep. Post-built structures straddling the boundary ditches at Valley Belt, but integral to the system of fences, were interpreted as gateways for coralling sheep in and out of the enclosures (Ashwin and Bates 2000, 190). Although the surviving postholes flanking Ditch F2003 did not appear to form a structure, they could feasibly have represented the remnant of a gateway of this kind. Like Valley Belt, Lodge Farm could have been a site periodically frequented for a variety of agricultural and craft activities, rather than a permanent settlement (Ashwin and Bates 2000, 189).

The few known early Iron Age settlements in Norfolk are concentrated in the southwest, on the light soils of the Breckland, east of Thetford (Davies 1996, 67). However, the excavations at Valley Belt have shown that areas of east Norfolk were also settled at this time (Ashwin and Bates 2000, 141). Both Lodge Farm and Valley Belt share light sand/gravel soils and occupy slightly raised ground close to large watercourses; Valley Belt lies c. 1km south-east of the River Yare-Tas and Lodge Farm is equidistant between the Tud to the north and Yare to the south-east, each c. 1.5km away (Figs. 1 & 3). This reinforces the developing picture that in east Norfolk (as in much of the eastern region), early Iron Age settlement favoured the lighter soils of the river valleys (Bryant 1997, 23-5), but kept to the higher, drier ground up the valley slopes.

These sites were presumably chosen because they combined relatively easily cultivatable soils with proximity to water, which would have been essential for rearing livestock, particularly cattle (Davies 1996, 66-7). However, little evidence has yet been recovered to clarify our rather vague presumptions about the agrarian economies of these early Iron Age communities. The acidic soil at Valley Belt destroyed any trace of animal bone, which could have shed light on the suggested stock management taking place on the site (Ashwin and Bates 2000, 190). The paucity of animal bone at Lodge Farm, which one might have expected to find alongside the quantity of pottery in Ditch F2003, may also be explained by the acidic nature of the soil (Phillips in Woolhouse 2007). Given the present gaps in our understanding of their economic bases, it is unsafe to draw firm conclusions about the reasons why certain settlement sites were chosen.
At least one further factor can be identified which might have had a bearing on the decision to settle in the vicinity of the site. As discussed above, the ridge of higher ground between the Yare and Tud had been used for numerous funerary monuments and burials in the early and middle Bronze Age. Several cropmark ring ditches representing ploughed-out barrows are known close to the site and one may once have lain within the site itself (Palmer 2002, 1; Fig. 1). These monuments would still have been highly visible features of the landscape in the early Iron Age and might have been a ‘pull’ factor encouraging settlement. At Harford Farm in Caistor St Edmund, a group of middle Iron Age roundhouses were built in a narrow corridor between and around several barrows, which at the time would still have been a ‘looming presence’ in the landscape (Ashwin and Bates 2000, 135). Although the exact nature of the Iron Age activity at Lodge Farm is uncertain and the spatial relationship between Ditch F2003 and the barrows in the surrounding area is far less direct, it is nevertheless possible that as at Harford Farm, the earlier funerary monuments acted as a focus for later settlement. It may be significant that the northern pair of linear cropmarks at Lodge Farm has peripheral contact with the possible ring ditch in the north of the site (Fig. 1): perhaps the barrow mound was used as a reference point in later land divisions. Exactly how the earlier earthworks were perceived by the Iron Age population is impossible to ascertain, but we can probably assume that they were not considered in any way threatening given that the inhabitants of Harford Farm were content to live alongside them. Less utilitarian considerations than the tractability of the soil or proximity to water may have influenced where the Iron Age inhabitants of East Anglia chose to live.

CONCLUSION

Groups of worn and broken late Bronze Age metalwork, such as that from Lodge Farm, have often been interpreted as ‘founders’ hoards’ of scrap metal awaiting recycling. However, the frequency with which such ‘hoards’ were never recovered and the fact that many include unused or deliberately broken items indicates that metalwork deposition was often about something more than utilitarian scrap hoarding or disposal of unwanted ‘rubbish’. The Lodge Farm ‘hoard’ was probably deposited on the periphery of a contemporary occupation area. It might have been intended to emphasise the ‘liminal’ zone between the inside and outside of a settlement or to commemorate an important event in the life of a community or its inhabitants. Deliberate structured deposits of metalwork have been found in association with important boundaries at other later Bronze Age sites.

ACKNOWLEDGEMENTS

The fieldwork was directed by Phil Weston; the project was managed for AS by Jon Murray. Finds were coordinated by Claire Wallace. The struck flint was analysed by Dr Martin Tingle, the pottery by Sarah Percival, the ceramic building materials by Andrew Peachey, the small finds, metalwork and miscellaneous finds by Nina Crummy, the animal bone by Carina Phillips and the bulk environmental samples by Val Fryer. Graphics were produced by Tamlin Barton and Charlotte Davies and illustrations drawn by Caroline George and Tansy Collins.
Archaeological Solutions is grateful to Taylor Woodrow Developments Limited for commissioning and funding the excavation (in particular Mr Roger Brewer for his kind assistance). AS would also like to acknowledge the input and advice of Messrs. David Gurney and Andy Hutcheson of Norfolk Landscape Archaeology and of Jan Allen at the Norfolk Historic Environment Record office.

AS is grateful to Suffolk Record Office (Bury St Edmunds) and Cambridge University Library for access to journal articles and secondary literature.

AS is pleased to acknowledge Mr Derek Woollestone, the metal detectorist for the project. The author would also like to thank Peter Thompson for his comments regarding the pottery recovered during the trial trench evaluation.

Illustrations of the earlier metalwork finds from Lodge Farm were reproduced with kind permission of Norfolk Museums and Archaeology Service.

BIBLIOGRAPHY

Ashwin, T.M. 1996b ‘Excavation of an Iron Age site at Park Farm, Silfield, Wymondham’, Norfolk Archaeology 42, 241-82

Beadsmoore, E., Cooper, A. and Hall, A. 2003b Lodge Farm, Costessey. Archaeological Evaluation by Field Survey (Phase 2). Cambridge Archaeological Unit Unpublished Report No. 559

BGS (British Geological Survey) 1985 East Anglia Sheet 52°N - 00° 1:250,000 Series Solid Geology. Ordnance Survey, Southampton
BGS (British Geological Survey) 1991 *East Anglia Sheet 52°N - 00° 1:250,000 Series Quaternary Geology*. Ordnance Survey, Southampton

Brück, J. 1995 ‘A place for the dead: the role of human remains in the late Bronze Age’, *Proceedings of the Prehistoric Society* 61, 245-77

Clark, J.G.D. and Fell, C.I. 1953 ‘The Early Iron Age Site at Micklemore Hill, West Harling, Norfolk’, *Proceedings of the Prehistoric Society* 19, 1-40

Cunliffe, B.W. 1991 *Iron Age Communities in Britain. 3rd* ed. London

Evans, C. 2003 *Power and Island Communities: Excavations at the Wardy Hill Ringwork, Coveney, Ely*. East Anglian Archaeology Report No. 103

Everill, P. and Hall, A. 2002 *An Archaeological Desk-Based Assessment of Land at Lodge Farm, Costessey, Norfolk*. Cambridge Archaeological Unit Unpublished Report No. 479

Gibson, C. 2004 *Lines in the Sand: Middle to Late Bronze Age Settlement at Game Farm, Brandon*. East Anglian Archaeology Occasional Paper No. 19, Archaeological Solutions, Hertford

Grant, J. and Sutherland, M. 2003 *Lodge Farm, Costessey, Norfolk. An Archaeological Evaluation (Trial Trenching)*. Archaeological Solutions Unpublished Report No. 1455

Green, B., Rogerson, A. and White, S.G. 1987 *The Anglo-Saxon Cemetery at Morning Thorpe, Norfolk*. East Anglian Archaeology Report No. 36, Gressenhall

Inv. Arch. *Inventaria Archaeologia*

O’Connor, B. 1980 *Cross-Channel Relations in the Late Bronze Age*. BAR International Series 91, Oxford

Percival, J.W. 2002 ‘Neolithic and Bronze Age Occupation in the Yare Valley: Excavations at Three Score Road, Bowthorpe, 1999-2000’, *Norfolk Archaeology* 44 Part 1, 59-88

Piggott, S. 1938 ‘The Early Bronze Age in Wessex’, *Proceedings of the Prehistoric Society* 4, 52-106

Prigg, H. 1880 ‘On a Hoard of Bronze Antiquities from Reach, Cambridgeshire’, *Journal of the British Archaeological Association* 36, 56-62

Roberts, B. and Ottaway, B.S. 2003 ‘The use and significance of socketed axes during the late Bronze Age’, *European Journal of Archaeology* 6 (2), 119-40

Robins, P.A. 1996 ‘Worked flint’ in Ashwin, T.M. ‘Excavation of an Iron Age site at Park Farm, Silfield, Wymondham’, *Norfolk Archaeology* 42, 266-70

Taylor, R.J. 1993 *Hoards of the Bronze Age in Southern Britain. Analysis and Interpretation*. BAR British Series 228

Thompson, P. 2003 ‘The Pottery’ in Grant, J. and Sutherland, M. *Lodge Farm, Costessey, Norfolk. An Archaeological Evaluation (Trial Trenching)*. Archaeological Solutions Unpublished Report No. 1455

Woolhouse, T. 2007 *A Late Bronze Age Hoard and Early Iron Age Boundary at Lodge Farm, Costessey. Archive Report*. Archaeological Solutions unpublished report no. 2948
Fig. 1 Site location plan
Fig. 2 Prehistoric sites and finds near Lodge Farm
Fig. 3 Plan of archaeological features in Areas 1 and 2
Fig. 4 Sections of early Iron Age features
Fig. 5. Pottery illustrations. Scale 1:3
Fig. 6 Copper alloy objects from the dispersed late Bronze Age hoard. Scale 1:1.
Illustrations of nos. 6-15 reproduced with kind permission of Norfolk Museums and Archaeology Service

Fig. 7 Copper alloy objects from the dispersed late Bronze Age hoard. Scale 1:1.
Fig. 8 Copper alloy objects from the dispersed late Bronze Age hoard. Scale 1:1.
Fig. 9 Copper alloy objects from the dispersed late Bronze Age hoard. Scale 1:1.