REPORT FROM THE

Geophysics

COURSE

29 JULY – 3 AUGUST 2001

SHARP Site Code : SH01 SMV

Norfolk S.M.R. Number : 1615

SEDGEFORD HISTORICAL AND ARCHAEOLOGICAL RESEARCH PROJECT
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>2</td>
</tr>
<tr>
<td>Participants</td>
<td>3</td>
</tr>
<tr>
<td>List of figures</td>
<td>4</td>
</tr>
<tr>
<td>List of photographs</td>
<td>5</td>
</tr>
<tr>
<td>Introduction – aims and objectives</td>
<td>7</td>
</tr>
<tr>
<td>Electronic Distance Meter (EDM) analysis</td>
<td>11</td>
</tr>
<tr>
<td>Levels</td>
<td>13</td>
</tr>
<tr>
<td>Resistivity measurements</td>
<td>16</td>
</tr>
<tr>
<td>Resistivity - West Wall – Area C</td>
<td>17</td>
</tr>
<tr>
<td>Resistivity - East End (Areas A, B & D)</td>
<td>19</td>
</tr>
<tr>
<td>Resistivity – South Aisle area</td>
<td>23</td>
</tr>
<tr>
<td>Tree Survey</td>
<td>25</td>
</tr>
<tr>
<td>Conclusions</td>
<td>27</td>
</tr>
<tr>
<td>Summary Resistivity Plot</td>
<td>29</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>Appendix I : The geology of North-west Norfolk.</td>
<td>31</td>
</tr>
<tr>
<td>Appendix II : Permission to rebuild, 1770</td>
<td>32</td>
</tr>
<tr>
<td>Appendix III : P. Neville Rolfe to Ogle 7th June 1884</td>
<td>33</td>
</tr>
<tr>
<td>Appendix IV : Level Transect data and plots</td>
<td>34</td>
</tr>
</tbody>
</table>
Acknowledgements.

The SHARP Directors, Geophysics Supervisor and course participants wish to acknowledge the following people for assistance with the project and production of this report:

The Rector, Churchwardens and Parochial Church Council of St Mary's Church, Sedgeford, for allowing us to use the church yet again.

Ray Thirkettle, SHARP, for building the geophysics apparatus.

Ian Twaint, Chief Technician, School of Biological Sciences, University of East Anglia, Norwich for loan of the colour printer.

Chris Heath, Cybernetics Department, University of Bradford, for loan of the lap-top computer.

Finally, I would like to acknowledge the influence of Dr Peter Carnell of Blakeney, Norfolk whose energy and infectious enthusiasm for the subject has been an inspiration to many a SHARP volunteer, myself included, to continue “geophysicing”. With fond memories of past Geophysics courses; of geophysics shoes, bacon butties on Blakeney Key and sumptuous lunches. Jacky Heath.
Course Participants

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Address</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael</td>
<td>Ansell</td>
<td>6 Long Acre, Cuddington, Northwich, Cheshire. CW8 2XP</td>
<td>K_llama@hotmail.com</td>
</tr>
<tr>
<td>Katherine</td>
<td>Bostock</td>
<td></td>
<td>Yvonne-edwards@btinternet.com</td>
</tr>
<tr>
<td>Yvonne</td>
<td>Edwards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacky</td>
<td>Heath (SHARP)</td>
<td></td>
<td>j.heath@uea.ac.uk</td>
</tr>
<tr>
<td>Rik</td>
<td>Hoggett (SHARP)</td>
<td></td>
<td>www.sharp.org.uk</td>
</tr>
<tr>
<td>Lyn</td>
<td>Hollyer</td>
<td></td>
<td>lynhollyer@cs.com</td>
</tr>
<tr>
<td>Jan</td>
<td>Porter</td>
<td>Jan Porter, Institute of Archaeology, 31 Gordon Square, London WC1H 0PY</td>
<td></td>
</tr>
<tr>
<td>Sanne-Marie</td>
<td>Roberts</td>
<td></td>
<td>Sanne_marieroberts@leggott.ac.uk</td>
</tr>
<tr>
<td>Mark</td>
<td>Shippey</td>
<td></td>
<td>Mark_shippey@hotmail.com</td>
</tr>
<tr>
<td>Peter</td>
<td>Taylor</td>
<td>6 Ashleigh Avenue, Wakefield, West Yorkshire. WF2 9DA</td>
<td></td>
</tr>
<tr>
<td>Harvey</td>
<td>Tomlin</td>
<td></td>
<td>Tomlinharv@aol.com</td>
</tr>
</tbody>
</table>
List of figures.

Figure 1: Location of the church of St Mary the Virgin, Sedgeford, Norfolk.

Figure 2: St Mary's Church, boundaries of the churchyard and areas under study.

Figure 3: Earthworks survey by Yvonne Edwards.

Figure 4: Transects surveyed with the Dumpy Level.

Figure 5: Surface plot of resistivity measurements taken in area C.

Figure 6: Surface plot of resistivity measurements taken in areas B, AB, A, AD and D.

Figure 7: Surface plot of resistivity measurements taken in the area between the south transept and porch.

Figure 8: Tree Survey.

Figure 9: Surface plot of all resistivity measurements taken around the church.
Photographs – Lyn Hollyer

All the photographs were taken using a Kodak DC215 digital zoom camera. The photographers were Lyn Hollyer, Mark Shippey and Sanne Roberts. Scale was established using a 2 metre ranging pole held by Sanne Roberts or Jan Porter. Photographs were taken to illustrate some of the external architectural features that seem to indicate major structural changes. Photographs were also taken of the earthworks surrounding the church. Where necessary contrast and colour balance were altered using Adobe Photoshop 5 so that relevant features were enhanced.

List of photographs:

Photograph 1: Area D - South side of the shortened chancel showing a) repairs to the wall, b) off-set priest’s door, c) possible inserted window to the left.

Photograph 2: Area B - North facing wall of chancel, indicating junction with demolished transept wall.

Photograph 3: Area B - a grid of metre tapes is being laid out prior to making resistivity measurements to investigate a possible demolished north transept wall.

Photographs 4 & 5: Surveying the slope from the road down towards area C, using the TOPCON GTS212 EDM

Photograph 6: Illustrating the “U” shaped depression leading to the north porch.

Photograph 7: A discussion about tapes!

Photograph 8: The west wall. Sanne-Marie is standing by the OS BM 19.78 m

Photographs 9 & 10: Windows in the south and north walls of the Chancel.

Photographs 11 & 12: Rubble in the bank and patched stonework indicate a lost wall.

Photograph 13: Proximity of the south transept wall (left) to an Early English window in the Chancel.

Photograph 14: Bisected clerestory window

Photograph 15: South transept & porch

Photograph 16: Poster presentation in the marquee
(Sedgeford map taken from the Ordnance Survey County Series, Norfolk sheet 142, 2nd edition, 1906. 1:2500 scale, 25" to 1 mile)

Figure 1: Location of the church of St Mary the Virgin, Sedgeford, Norfolk.
Introduction – Aims and Objectives. Jan Porter

The church of St Mary the Virgin is in the parish and village of Sedgeford in Norfolk, to the north of the Heacham river. (See Figure 1) The geology of this north west corner of Norfolk is clearly visible in the cliffs at nearby Hunstanton. White chalk overlies a red mid-Cretaceous limestone, which in turn overlies brown Carstone. The latter is a relatively soft stone which is used in the region for facing walls; the wall bounding the north of the churchyard is constructed of Carstone and occasional blocks of it can be seen in the fabric of the church itself. (See Appendix I – The Geology of Norfolk). Sedgeford is situated on the western slope of what has been called the North Norfolk Ridge, a band of land rising to nearly 100 metres above sea level, and which runs in an approximately north – south direction (surmounted by the Pedder’s Way) from Ringstead to Swaffham. This chalk ridge forms the watershed between the rivers (such as the Heacham river) which flow into the Wash and those which flow towards the Norfolk Broads and ultimately Great Yarmouth. Evidence of this chalk aquifer can be seen close at hand, in springs in fields immediately to the west (the Ladywell) and south of the church. (Fig 1.)

The church has been altered at several times in its history. The oldest part of the church is the tower, which may originally have been part of a wooden church. By the thirteenth century the stone church comprised the original round tower, with an octagonal belfry, the chancel, nave, arcades and aisles. This original smaller church was on a good building platform, and as the church was enlarged it became less stable, resulting in many phases of rebuilding and repair. The nave is narrow, and the original aisles probably were too. North and south transepts were added in the early fourteenth and then the aisles were extended to embrace the tower, forming the north and south vestries. In the fifteenth century, the north transept was demolished and the north wall rebuilt. All the walls were heightened, the clerestory built and the rood-stair turret built. In 1770, the chancel was shortened, following permission from the Bishop of Norwich (See Appendix II). The west end, now largely clear of burials, was altered in the late nineteenth century. In addition, at some time in the same century, soil was removed from around the base of the chancel and northern side aisle walls to prevent damp, and a drainage system installed. In 1991, another drain was laid across the churchyard, across the end of the chancel.

(The full church archive report is currently being prepared by Rik Hoggett of the SHARP team.)

Four major research questions were to be addressed during the course of the week.

1. Can the outline of the chancel, shortened in 1770 be located geophysically and its extent mapped? (Area A, Figure 2.)

2. Can the outline of the north transept, described as in ruins in 1809, be located geophysically and its extent mapped? (Area B, Figure 2.)

3. The area to the west of the church should be examined geophysically in order to identify the outline and extent of previous paths and walkways. (Area C, Figure 2)

4. The area to the east of the eastern wall of the south transept should be examined in order to ascertain whether or not there was a previous wall, as is suspected from SHARP’s work on the building. (Area D, Figure 2.)
During the week it was decided to investigate the entire south-eastern part of the churchyard by resistivity up to the boundaries, as well as the original area C. The considerable slope of the churchyard was surveyed by leveling and an earthworks survey was carried out using the Electronic Distance Measurer (EDM). The location of trees and gravestones significant to the resistivity results was plotted and recorded.

There is evidence in the existing church structure for considerable alteration. For example, with regard to point 1 which relates to the chancel, the position of the priest's door suggests that the chancel has been shortened. Usually this door is found in the centre of the side wall, but in this case it is near to the east end. The exterior of the south wall of this shortened chancel shows clear evidence of rebuilding of the end wall. (Photograph 1) In addition, it appears that the roof has been raised, and there have been changes to the relative position of the windows. Alterations to this wall are also suggested by the presence of a window squeezed into the corner of the chancel at the chancel-transept junction. (Photograph 1)
Photograph 1: Area D, South side of the shortened chancel showing
 a) repairs to the wall, b) off set priest's door,
 c) possible inserted window to the left.

Similarly, the exterior of the north facing wall (Photograph 2) shows clear evidence of a
junction which is suggestive of the presence of an adjoining transept, relating to the
second point. This photograph also shows a patch of rebuilt wall on the north aisle.

Photograph 2: Area B, North facing wall of chancel,
 Indicating junction with demolished transept wall.
It was hoped that a geophysical survey of the area around the church would provide further physical evidence of these structural alterations. Resistivity measurement was the method of choice, the apparatus being cheap to make and easy to use, particularly on the variable sloping terrain. (See photograph 3 below.) Readings taken from a simple meter could be directly related to conditions underfoot, with relatively higher values indicative of anomalies such as wall foundations or disturbed earth from ditches. The process of writing these readings down by hand on a data sheet provided an instant overview of the area under survey, enabling trends to be spotted, and back-checks to be made if necessary.

Photograph 3 : Area B - a grid of metre tapes is being laid out prior to making resistivity measurements to investigate a possible demolished north transept wall. The considerable slope of this area from the boundary wall at the top down to the ditch along the north wall of the church can be seen.
Electronic Distance Meter (EDM) analysis – Yvonne Edwards.

The plan was to survey the earthworks around the church and eventually to coordinate the data with that from the resistivity survey. The data was related to a partial Benchmark (BM) grid around the church, which was in turn established using an arbitrary zero BM in the Boneyard. The earthworks and the positions of the BM points are shown in Figure 3.

The earthworks consist of two large banks on the north side of the church divided by a still elevated, but generally lower trough. To the north-west corner is a small, elevated square platform which is recognizable only from one side. The north side of the nave and chancel also are divided from the churchyard by a bank. It seems likely that the earthworks formed by banks one and two were formed by earth thrown up when the platform for the church was constructed. The trough between these two banks could be interpreted as an early path across this embankment. The bank close to the north wall of the church similarly probably represents soil thrown back when the walls were cleared sometime in the 1800’s.

These ideas are based on written records. For example there is a letter between the Tithe Redemption and Vicars of Sedgeford which reports that in 1841 the church was in a very poor state with earth “to within six inches of the windows” (Appendix III: P. Neville Rolfe to Ogle 7th June 1884, PD601/3). This same letter also mentions that the churchyard was “unwalled” this may have some bearing on the idea of a path running directly from the north porch to the road. There is also an indication that at sometime the west end of the church collapsed, since money was being requested for its repair in 1969 (cost: £1653, same ref); this may provide a clue regarding the small square platform at the west end of the church.

Photographs 4 & 5: Surveying the slope from the road down towards area C using the TOPCON GTS212 EDM
A TOFCON GTS212 EDM was used. The "coordinates" program option was used which gives estimates of eastings (E), northings (N) and height above the arbitrary zero in the Boneyard. The readings for banks one and two and the square platform were made from the north-west corner of the churchyard while the readings across the east end of the chancel and most of the bank along the north wall were taken from the north-east corner.

At present we are unable to obtain the final EDM plots because the computer program has not been modified to take into account the new BMs and new basic zero. However the levels show us that the height of banks one and two vary from 0.4 to 1 metre, and that bank 2 is generally at a higher level than bank 1 (this is obvious as the pathway into the churchyard is down a considerable slope). The small square platform is approximately 0.25 metres high.

Figure 3: Earthworks survey by Yvonne Edwards. (For reasons explained above, the earthworks are not drawn to scale.)
Levels – Peter Taylor & Michael Ansell.

A series of level measurements were taken parallel to each side of the church and also at right angles to the church at both the south and north sides.

The following levels were taken (See Figure 4).

- B-A & C-D adjacent to the north wall of the church
- E-F 14m from the north wall
- G-H 28m from the north wall
- S-T 1m from the south wall
- U-V 10m from the south wall
- Q-R 3m from the east wall
- I-J adjacent to the west wall buttress
- K-L 2m to the west of I-J
- M-N at right angles to the church on the south side 16.5 metres from the east wall
- O-P at right angles to the church on the north side 16.5 metres from the east wall

Figure 4: Transects surveyed with the Dumpy Level.
The levels on the west side (K – L and I – J below) showed a distinct platform level between 16 – 22 metres before a steep rise to join the slope which is a feature of the north side of the church. It has been proposed that this flat area may represent a platform dug out during the construction of the early church. In addition we were looking in this area for evidence of a pathway that may have existed on the West Side of the church and which approached a now non-existent west door.

The level taken on the east side of the church (Q - R Appendix IV) does not show a platformed area. Instead, there is a constant rise in gradient to the north.

One of the other tasks we were set was to establish the former existence and dimensions of the extension to the chancel for which there is documentary evidence of its shortening. It is surprising to find no evidence of this. Perhaps the slope here is the result of grading after demolition of the chancel or due to natural slippage of soil down the slope.

Soil slippage was apparently a cause of dampness of the church when soil accumulated against the north wall. This soil has now been removed resulting in the ditch along the length of the north wall. Our measurements do show that a small amount of soil is beginning to accumulate once more along part of the north wall at its west end.

Line E - F (shown on the following page) at 14 metres parallel to the north wall also shows a shallow 'U' shaped depression (between 18 – 26 metres on the chart) approaching the current north door but higher up the slope than the present path. This may be the remains of a previous pathway to the church, probably abandoned because the slope would have rendered it treacherous in bad weather. This area was not investigated geophysically.
Photograph 6 showing the “U” shaped depression (arrowed) leading to the north porch.

The level measurements to the south of the church are more or less flat and, in particular, show no indication of an earlier extension to the south transept.

These level measurements were plotted onto graph paper, transferred to permatrace and inked in by Mike Ansell. This sheet is filed in the SHARP archive. The plots shown on these pages were generated from an Excell spreadsheet, and similar plots of all the level transects are in Appendix IV.
\textit{Resistivity measurements – Lyn Hollyer.}

The resistivity survey was conducted over 5 days in July 2001. There had been heavy rain two weeks before the survey was carried out followed by hot sunny weather, which continued until the final day when it began to rain just as the final traverses were being made. The survey used purpose-built equipment consisting of a pulse generator and a high impedance AC digital voltmeter. The usual twin dipole configuration was used with the remote probes 20 metres from the nearest survey point. The two moving probes were set 50 cm apart in order to record conditions about 25 cm below the surface.

In order to establish continuity between areas and over the different conditions prevailing from day to day, we took note of the last reading taken and the following day adjusted the distance between the remote controls so that the same reading was obtained from the same place. Readings were taken at 50 cm intervals so as to maximise the detail obtained. The readings were recorded manually and then entered into the computer. The resulting matrix of values was analysed using 2D surface plots.

\textit{Results}

The geophysics results are presented as three distinct areas, from the west wall (Area C), from the east end (Areas A, B & D) and from the south aisle area. The latter area was not part of the original research brief, but was surveyed because it was considered to be a continuation of the survey around the east end of the church. In addition, because there were no records of building work in this area, this relatively undisturbed area would act as a ‘negative control’ for the results from the other areas.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Photograph 7: A discussion about tapes!}
\end{figure}
West Wall – Area C – Mark Shippey & Sanne-Marie Roberts.

A Geophysics survey was made of the area along the west wall of the church.

![Photograph 8: The West wall. Sanne-Marie is standing by the OS BM 19.78 m](image)

The west wall area is described by a rising bank on the north side, a Victorian Ha-Ha on the western extreme boundary and a protected conservation on the south side. (See Figure 2.) Evidence of a raised stepbridge leading to the adjoining Rectory across the Ha Ha was found in the NW corner of the area. In considering the wall from an archaeological perspective, there is evidence which suggests the presence of an earlier door at the centre of the wall to a height of 1.5 metres and width of 0.75 metres (arrowed on photograph 8). The geophysics transect taken was 20 m by 5.75m along a north – south orientation.
Figure 5: Surface plot of resistivity measurements taken in area C
(South = left, north = right)

The resultant surface chart above may be interpreted in the following way.

- A central band of high resistance at a right angle to the suggested door is apparent. This may be evidence of a pathway leading from the Vicarage to a west wall entrance to the church.

- Whilst there is no evidence of other paths, this may be because the geophysics survey went through to a greater depth than that of possible earlier paths.

- The area of the chart showing low resistivity (on right = north-west) is explained by the presence of trees and its form and the softer ground can be interpreted as suggesting the existence of a platform.

- The areas of high resistance running from south to north across the centre of the chart correspond with extant gravestones.

- The rectangular low resistance feature at 10-11 m hard against the west wall is explained by the fact that this is the position of a lightning conductor earth entry point. The curving band of higher resistance above and to the north of this feature may be due to material removed when the lightning conductor was installed.

- The central low resistance square to the extreme south of the chart is also explained by tree presence.

- The consistent line of low resistance that runs N-S hard against the west wall reflects the presence of the building drain.

- The 4 m strip of low resistance to the extreme north of the transect corresponds with chalk evidence on the surface that suggests disturbance associated with earthwork activity.
East End (Areas A, B & D) – Harvey Tomlin & Katherine Bostock.

Three of the four major research questions were located at the east end of the church. Areas B, A, and D, relating to the north transept, chancel and south transept respectively. Each of these areas and the geology will be analysed in turn with reference to the geophysical survey results (see Figure 6 at the end of this section : Surface plot of resistivity measurements taken in areas B, AB, A, AD and D).

Geology

The background readings indicate a band of high resistance running north – south beyond the existing chancel. This is possibly the natural chalk. However, it is not continuous as it is broken by disturbance. This disturbance could be due to the importance of this position as a burial site, recent drainage work and creating a platform for the church to be built.

The low resistance reading to the north of the church building is probably soil build up, as it was cleared by the construction of the platform and the continuous clearance of soil from the walls. This was due to soil creep. It is also possible that the land to the south east of the chancel is falling away.

A possible interpretation of these readings could be that the band of north – south high resistance is a previous church boundary wall. Sections of this would have been removed as the church was extended. There is also a rectangular feature in the east, under the trees, against the current church boundary, which would have been outside the possible old boundary.

Chancel

There is clear evidence that the chancel has been modified.

• Faculty letter from the parish records PD601/28/1 (9th March 1770) reports a shortening of the chancel from 47 feet to 20 feet. It also supports the idea that it was built on unstable ground 4 bricks thick to the water table. (See appendix I).

• Extensive patching of the south chancel wall. In addition, the door to the chancel would traditionally occupy a central position rather than being at one end. (see photograph 1)

• The east chancel wall is in good condition with no patching.

• The windows are not symmetrical and are of different designs. (see photographs 9 and 10)
Photographs 9 & 10: windows in the South and North walls of the Chancel.

There are excellent results from the geophysics showing a rectangular structure on the same alignment as the present chancel. The north, north-east corner and most of the east wall are visible in the survey. There are low readings for the south-east corner possibly due to stone robbing or suggesting the weak point of the structure where the building collapsed, or that any remaining walls are deeper than the survey. There have also been modern drains laid in this area.

Evidence for the North Transept.

- The external window in the chancel is of a type and design that is not weatherproof and is for internal use (photograph 10)

- An exisitant wall is visible in the bank around the church. (photograph 11)

- Evidence in the walls of the chancel and aisle of patched stonework indicating the joining of an earlier wall. (photograph 12)

- Internally, there is a difference in the level of the floor at the end of the north aisle, and the half column at the north end of the aisle is partially built around.

Photograph 11 & 12: rubble in the bank and patched stonework indicate a lost wall.
The geophysical results indicate that the wall rubble in the bank continues beyond the width of the existing aisle as an area of high resistance. There is also an area of high resistance corresponding to the patched stonework on the aisle. There is a clear rectangular feature indicating the existence of the previous north transept. This is probably rubble or foundation remains. There are lower resistance readings between the east and west walls of this possible structure. These may have been robbed out or are below the level of our survey. The accumulation of evidence strongly indicates the original position of the north transept.

South Transept

- The east wall of the south aisle butts over the internal splay of a window in the south transept. (photograph 13)

- It would be expected that there would be a matching internal window similar to the one between the chancel and the suspected north transept.

- It is expected that the transepts would be symmetrical when first built.

![Photograph 13: Proximity of the south aisle wall (left) to an Early English window in the south transept.](image)

We found no additional evidence to support the proposed earlier wall, more investigation may be required. It is suspected that the existing south transept occupies its original position.
Figure 6: Surface plot of resistivity measurements taken in areas B, AB, A, AD, and D
Church South Aisle Area – Sanne-Marie Roberts.

There is structural evidence on the southern end of the church suggesting that the south transept has been heightened. This is because the last window of the clerestory has been bisected by the transept roof. (photograph 14)

There is also evidence that the side aisle has been widened, infringing on a window on the western side of the transept. (see photograph 13)

Photograph 14: Bisected clerestory window (arrowed.)

The area between the south transept and porch, bordered by the south aisle of the church and the conservation area was surveyed geophysically to see if there is any other physical evidence of structural phases.

There were several large burial vaults, with brick-lined voids beneath, and gravestones in this area. These obstructed some of the resistivity readings, which had to be missed out. It was suspected that the burial vaults would give higher readings because of the brick lining. This was the case, with the highest readings being just to the north of the largest vault.
Figure 7: Surface plot of resistivity measurements taken in the area between the south transept and porch. (The transept and porch are the blue areas to the right of the plot)

The readings were generally high, probably corresponding to drainage ditches and disturbance due to burials. There was no evidence for other structural phases in this area.

Photograph 15: View of the south transept and porch

The position of trees in or near to the area under investigation by geophysics resistivity was located by triangulation to known points – corners and buttresses – on the church building. This was carried out because it was assumed that the presence of trees and their root systems would have an influence on the moisture content of the soil and hence the resistivity measurements. We predicted that these would be higher around the trees.

I was also interested in the species of tree present in the churchyard. With the help of Yvonne and pressed volunteers, the diameter of the trunks was measured in inches, along with the triangulation measurements in metres.

"A Field Guide to the Trees of Britain and Northern Ireland" (Alan Mitchell, Collins, 1974) was used to identify the tree species, which were Lime, Elm and Scots Pine. The following is an extract from this book concerning the estimation of the age of a tree.

“the mean growth in girth of most trees with a full crown is one inch a year. A tree 8 feet (96 inches) in girth is usually about 100 years old. Grown in a wood it would be 200 years old, and in an avenue or slightly hemmed in, it would be 150 years old. This has been found to be true of hundreds of specimens of almost every species, coniferous or broad-leaved, of the large growing trees.”

A further note says that the Scots Pine and Yew start with normal growth, but this soon falls to much below 1 inch per year. It was worth reading what was written about the Yew because of this species common location in churchyards.

“The Yew has a unique growth. Many Yew trees have achieved the standard inch for the first 100 years, but from few good data, it is apparent that they soon fall to about half this rate and gradually, over 4 – 500 years fall to one inch in 5 – 15 years, whilst the crown is still in full vigour and increasing its spread annually. Without an earlier recording of its girth, it is thus very difficult to estimate the age of a large yew and few can be properly measured."

<table>
<thead>
<tr>
<th>A Rough guide to the age of a Yew is</th>
<th>8 ft girth (96 inches)</th>
<th>100 – 150 years old</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 ft (192 inches)</td>
<td>300 – 400 years</td>
<td></td>
</tr>
<tr>
<td>20 ft (240 inches)</td>
<td>500 – 600 years</td>
<td></td>
</tr>
<tr>
<td>30 ft (360 inches)</td>
<td>850 – 1000 years</td>
<td></td>
</tr>
</tbody>
</table>

I found it interesting to note that the average girth of tree in the row of yews along the eastern boundary of the churchyard was about 100 inches, making them 100 – 150 years old by the table above. This tied in very nicely with gravestones nearby, which had dates of death of 1858, 1867 and 1881.
Figure 8: Tree Survey, St Mary's churchyard, Sedgeford.
(The trees along the Western boundary were not surveyed due to insufficient time.)
Conclusions

Conclusions drawn from this study of the churchyard at St Mary's Sedgeford can be made in two respects. Firstly, in general, as to use of geophysics technique and secondly, specifically, to the research questions proposed in the Introduction and to information gained by the levels survey.

It could be argued that to use the resistivity apparatus over the demolished nave, an area where we knew we would get a result, would not contribute greatly to the sum of knowledge about the church, however I feel that the process has been of value for various reasons. It is a vindication for the modest apparatus used, which performed reliably and produced consistent results over the week. In spite of being hampered by the sloping site, and the presence of trees and graves, an overall “picture” has been built up which has contributed to our understanding of the several phases of development of the church. Finally, it allowed course participants to relate findings to structures above the ground – something not easily done in an empty field for example. To send readings directly to a data logger was out of the question for financial reasons, forcing a more “hands on” approach. However, although the process of writing up data sheets before processing readings by computer was labour intensive, it had the distinct advantage of giving an overview of the area being studied, enabling trends of change in resistivity to be identified and readings checked immediately, rather than later. Storage of the results in spreadsheet form generated the simple but visually effective surface plots shown in this report, and also allows for the results to be reprocessed by more sophisticated software in the future.

Specifically then, as to the research questions, Figure 2 below shows the areas investigated by the team.

Figure 2: St Mary's Church, boundaries of the churchyard and areas under study.
1. Can the outline of the chancel, shortened in 1770 be located geophysically and its extent mapped? (Area A, Figure 2.)

Yes. The outline of the demolished Chancel can be clearly seen in the geophysics surface plot (Figure 6).

2. Can the outline of the north transept, described as in ruins in 1809, be located geophysically and its extent mapped? (Area B, Figure 2.)

Yes. There is a clear rectangular feature on the resistivity plot (figure 6) indicating the presence of the previous north transept.

3. The area to the west of the church should be examined geophysically in order to identify the outline and extent of previous paths and walkways. (Area C, Figure 2)

The proximity of several trees and the presence of graves within Area C made the geophysics results from this area more difficult to interpret, however a central band of high resistance may be evidence of a pathway leading from the Vicarage to a west wall entrance to the church. (Figure 5)

4. The area to the east of the eastern wall of the south transept should be examined in order to ascertain whether or not there was a previous wall, as is suspected from SHARP's work on the building. (Area D, Figure 2.)

In contrast with the clear changes in resistivity measured in areas where the walls of the demolished nave and north transept were presumed to have existed, no additional resistivity evidence was found to support the proposed earlier wall to the south transept.

Results from the earthworks and dumpy level surveys confirm and quantify the extent of slope of the site that is immediately apparent to the eye. Two areas of interest were highlighted; the position of an earlier, more direct, path from the north porch to Church Road and the presence of a platform nearby which requires more investigation. These findings, together with the EDM readings, should give a better three dimensional picture as to how the Church stands on its platform cut into the chalk landscape around it.

Figure 8 on the following page shows a summary resistivity plot of all the areas investigated around the church.
Figure 9: Surface plot of all resistivity measurements taken around the church.
Photograph 16: Poster presentation by Lyn and Harvey in the marquee at the Friday site tour.

This report was written by the participants of the 2001 Geophysics course and edited by Rik Hoggett M.A. It was compiled and printed by Jacky Heath B.A., M.Sc., who takes full responsibility for any alterations made to the original texts.
Appendix I: The geology of North-west Norfolk.
Appendix II: Permission to rebuild, 1770

PD 601/28/1 9th March 1770

Henry Goodall (the parish church of Sedgeford is) a very large and spacious building much more than sufficient to contain all the inhabitants of the said parish.... The Chancel did contain in length 47 foot and in width 24 foot and height to the wall plate 21 foot - that the said chancel being very old and decayed in the walls, roof and lead could not be repaired according to such dimensions without great expense that you have contracted the said chancel and made the same only 20 foot in length, 24 foot in width and 18 foot in height under the wall plate and have built a strong gable at the East end there of 4 bricks thick to the water table, 3 bricks thick to the height of the plates or level walls and 1 brick and a half with a gable part with a proper window and have repaired the side walls and toppec the same with bricks under the plates 2 foot deep and have put on a new roof of fir(?) with oak plates thereon, the principles whereof are 10 foot by 7 and have covered such roof with lead that the old lead being so thin by length of time as to be rendered unfit for use. You did therefore take down the old lead and sell the same and purchased the said new lead that the expense of repairing the said chancel and covering the same with lead as above, exclusive of the old lead, amounted to £60 and upwards, that the said chancel is now large enough for every purpose and is in a decent, proper and substantial condition and likely so to continue for many years. Wherefore you request that we would grant unto you our Licence of faculty for satisfying and confirming what you have done in and about the premises. Now know you that we the said Commisary having duly considered the contents of your said petition and being satisfied of the truth of the facts therein specified as also of the reasonableness and propriety of your request have thought fit to give and grant - and by those present, do so far as by law we may or can give and grant unto you the said Edmund Rolfe our license and faculty whereby we do satisfy and confirm all and whatsoever you have done in and about the premises aforesaid and also do indemnify you from any prosecution in our court for the same. Given under the seal of our office this 9th March 1770.
Appendix III

PD6O1/3
Letter from [P Neville] Rolfe to Ogie 7 June 1884

Charles Fawcett Neville Rolfe 2 July 1841
Rain falling through roof; foul damp smell from the green broken floor; vaults fallen in [there were vaults]; earth to within 6 inches of the windows [lower walls would be preserved; transepts higher then]; walls covered with centuries of whitewash, where there wasn’t mould; pulpit so narrow that the vicar of Ringstead could not get in; screen had been mended; no nails left; communion table surmounted by a three light wooden window; graveyard was unwalled partially, perhaps, not entirely, as the West Hall farm buildings date from C 16th, West Hall garden needed a wall to support the height of the churchyard above it] ‘The God’s acre around sown with the harvest of the resurrection was unwalled’. Lightning damaged tower and threatened roof. Dean of Norwich. Bishop and patron. managed the repairs, ‘but as he seldom listened to my complaints and as we differed in our notion of church architecture, many things were done and many left undone without any fault of mine’. Repairs cost £1,700.

PD6O1/42

Repairs 4 July 1969, Dendell French, Ringstead Rectory (Vicar)

£1,653 roof at base of tower walls at W end gutters and downpipes

Work done
i. W end collapse
ii. Stone slab roof replaced by tiles or timber
iii. General repairs

Future work - lead roof on S aisle leaks.

Appendix IV: Excel plots of Level Transects

(a) west–east transects.
west - east transects cont.

(b) south – north transects.
St Mary's Churchyard, Sedgeford
Tree Survey

KEY

Scot's Pine ✤

Elderberry ✡

Walnut ✦

Scale 1: 500

0

10 m